Published:04 Jan.2022 Source:Okinawa Institute of Science and Technology (OIST) Graduate University
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) in Japan and the Australian National University focused on a class of toxins found in most snake venoms and all other reptile and mammalian venoms called kallikrein serine proteases and traced their origins to a gene found in a common ancestor. “Venoms are cocktails of toxic proteins that have evolved across the whole animal kingdom, typically as a method of killing or immobilizing prey,” explained Agneesh Barua, co-first author and PhD student at OIST. “The oral venom systems found in snakes are particularly complex, and the origin of their venoms is still unclear.”
In a previous paper, Barua and his colleagues found that the mammal salivary gland and snake venom gland share a similar pattern of activity in a group of regulatory genes, suggesting that the foundation needed for venom to evolve exists in both snakes and mammals. “In that paper, we hypothesized that in the ancestor of snakes and mammals, there was a common group of genes that had a toxic potential,” said Barua. “Snakes and mammals then took different evolutionary paths, with snake lineages evolving diverse and increasingly toxic concoctions, while in mammals, venom did evolve, but to a much lesser degree. But what we wanted to know is whether the toxins within mammal and snake venom evolved from a common ancestral gene.”